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performance under alternating thermal loadings. To tackle the challenge, this study proposes an active
optimization adjustment method to achieve the required surface accuracy for spaceborne antennas.
Starting from the comprehensive analysis of external thermal fluxes in outer space, the heat transfer
model is firstly established to acquire the temperature field of the antenna system. Subsequently,

Keywords: considering the thermoelastic effect and the geometrical nonlinearity, the antenna surface accuracy is
Surface accuracy predicted. In particular, the thermoelastic forces induced from temperature changes and dimensional
Active adjustment deviations are precisely determined by the absolute nodal coordinate formulation. Moreover, an efficient
Thermoelastic deformation computational method with invariant matrices is developed to accelerate the prediction. On this basis,
Mixed-variable optimization we construct the on-orbit active adjustment model to compensate for the effect of thermally induced

Spaceborne antenna deformation on the surface accuracy. A mixed-variable optimization algorithm is further put forward to

find the optimal strategy of dimensional adjustment. Finally, a case study with simulation analysis and
experiment verification demonstrates the feasibility and superiority of the proposed surface adjustment
method.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction

The spaceborne synthetic aperture radar (SAR), with unique advantages of spatial resolution and weather adaptability, has revolu-
tionized remote sensing, satellite communication, and earth observation [1,2]. As mission-oriented challenges continue evolving, it is
imperative to further upgrade the integrated performance of the SAR system. Physically, the Ruze formula [3] indicates that the gain of
the main lobe directly depends on the antenna surface accuracy. Under this background, the surface root-mean-square (RMS) deviation is
of a harsh requirement for achieving satisfactory performance [4]. Taking the antenna operating at the Ku-band as an example, the desired
RMS deviation is only 0.33-0.50 mm [5]. However, the spaceborne antenna is inevitably exposed to extreme heat loads, and the thermally
induced deformation will seriously deteriorate the surface accuracy [6]. Hence, how to actively conduct the deformation adjustment and
adaptively optimize the surface accuracy of the antenna has been a great concern of practitioners [7].

In the past decade, several studies have explored mechanical compensation strategies to reduce the surface deviation of antennas.
According to the technical feasibility, the current methods are based on either ground pre-adjustment or on-orbit active adjustment. Du
et al. [8] presented an assembly adjustment strategy based on the propagation relationship between the surface deviation of the mesh
reflector and the dimension variation of cables. To minimize the overall distortions of the mesh antenna, Xun et al. [9] established a fast
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predictive control algorithm with the electromechanical coupled dynamic model. Zhao et al. [10] developed a link adjustment approach
to simultaneously optimize the surface accuracy and deployment reliability. Yu et al. [11] put forward a novel assembly accuracy control
method for the SAR antenna, which allows to find the sparse adjustment combination with the same deviation. However, all these ground
pre-adjustment strategies ignored the influence of thermally induced deformation on the antenna structures. In fact, since the spaceborne
antenna periodically travels through the sunlight and shadow regions, the time-dependent thermal loads are the main cause of surface
accuracy degradation [12,13]. Furthermore, the determined pre-adjustment under specific conditions cannot adaptively compensate for the
surface accuracy in the ever-changing thermal environment [14].

To overcome the deficiencies of ground adjustment, the active adjustment strategies are investigated for the orbiting antennas. Wang et
al. [15] and Song et al. [16] incorporated piezoelectric actuators into the cables of mesh reflectors for the on-orbit shape control. In addi-
tion, the electromechanical materials and shape memory alloys are also promising for regulating antenna deformation [17]. Inspired by the
pioneering works of Padula et al. [18] and Liu and Hollaway [19], Zhang et al. [20-22] conducted integrated structural-electromagnetic op-
timization for the shape control of mesh reflectors. The radiation pattern degradation induced by random structural errors was quantified
with enhanced iteration efficiency. Tanaka et al. [23] estimated the surface deformation from the changes in antenna gains, and further
developed a correction method based on the sensitivity matrix. Although this method reduces the calculation cost compared to the tradi-
tional pseudo-inverse method [24,25], it demands adequate measurement of antenna deformations, restricting its application to on-orbit
adjustment [26]. Lu et al. [27] proposed an on-orbit mechanical compensation method for the planar phased array antenna. However, the
interaction between the support trusses and antenna panels was not considered, and the control performance was weakened. Treating
the temperature distribution in the spaceborne antenna as an interval variable, Yang et al. [28] put forward an active adjustment method
by incorporating the min-max concept with the incremental equilibrium equation. Considering the thermal effect and truss deformation,
Nie et al. [29] optimized the structural parameters for mesh reflector antennas, which could also be transferred into the active shape
adjustment. However, the above studies are built on the assumption that the temperature distribution is uniform throughout the antenna,
whereas the on-orbit temperature field is actually uneven [30,31]. As to the surface accuracy compensation of spaceborne SAR antennas,
the method accounting for the spatial-temporal characteristics of the temperature field has not been reported yet.

As can be seen from the above introduction, the premise of thermal-structural analysis for the spaceborne antenna is to determine
the external thermal loadings and evaluate the temperature distribution [32]. The most commonly used approaches for thermal analysis
are the thermal network method (TNM) and the finite element method (FEM) [33,34]. The TNM is suitable for simple thermal problems
without complicated boundary conditions [35], and it needs to correct the selected parameters [36]. In contrast, FEM adopts interpo-
lation functions to integrate the geometric model into the thermal analysis, making it more feasible to solve the temperature field of
complex structures [37]. For example, Maksimov et al. [38] constructed FE-based theoretical formulas to quantify the thermal effect on a
microstrip antenna. The FE software was employed to determine the transient temperature distribution of the AstroMesh antenna in [39].
Yu et al. [40] constructed the dynamic heat conduction equation for an on-orbit antenna subjected to time-variant thermal excitation.
Although these numerical or theoretical models provide thermal information for key components such as beams or plates, it remains to
systematically discuss the temperature field of the entire antenna, including the deployable support structure and the reflector panels.

As reviewed above, the existing shape control techniques are not feasible for the active adjustment of on-orbit antennas. Further-
more, none of the previous studies have comprehensively revealed the thermal-structural coupling effect on the surface accuracy. To fill
these gaps, this research proposes an on-orbit optimization adjustment method to achieve the required performance for spaceborne SAR
antennas. The surface accuracy prediction model that incorporates the thermoelastic effect with the geometrical nonlinearity is firstly
constructed to determine the structural deformation in the service environment. Considering the prescribed constraints, the active shape
adjustment problem is further transferred into a mixed-variable optimization problem. Afterward, an enhanced particle swarm optimiza-
tion (PSO) algorithm is proposed to effectively minimize the on-orbit surface deviation.

The main contributions of this work are threefold. (1) Distinguished from previous studies that only conducted the shape control
at ambient temperature, a comprehensive method is proposed to actively adjust the surface accuracy of on-orbit antennas, breaking
through the limitation of the ground pre-adjustment. (2) Compared with the preceding thermal-structural analysis for antennas, the
uneven temperature field at different orbital positions can be theoretically calculated, discarding the unrealistic assumption on the tem-
perature distribution. (3) Taking advantage of the hybrid encoding scheme, an enhanced PSO algorithm for tackling the mixed-variable
optimization problem is developed with an adaptive parameter tuning approach, which shows competitive performance in determining
the adjustment strategy.

This article is structured as follows. To start with, the antenna structure and the focused problem are elaborated in Section 2. After
quantifying the thermal fluxes in outer space, Section 3 derives the heat condition model for acquiring the temperature distribution. Sec-
tion 4 formulates the thermoelastic deformation of the antenna system and proposes the surface accuracy prediction model. Subsequently,
an enhanced PSO algorithm is developed to optimize the surface accuracy in Section 5. For demonstrating the validity of the proposed sur-
face accuracy adjustment method, a case study is provided with numerical simulation and experimental verification in Section 6. Finally,
Section 7 summarizes the concluding remarks.

2. Problem elaboration

As depicted in Fig. 1, the spaceborne SAR antenna to be investigated in this study, which belongs to the active phased-array antenna
(APAA) type, consists of the load module, support links, and antenna panels. Apart from enhancing the structural stiffness, the support
links also undertake the mission of surface accuracy adjustment. With resorting to embedded actuators such as PZT, the length of links
can be changed to conduct the active shape adjustment for the antennal panels. After all, when the SAR satellite enters outer space, the
surface accuracy degradation is inevitable because of thermally induced deformation.

It has been indicated that the surface accuracy directly affects the satellite imagery resolution. To be more specific, the surface accu-
racy refers to the deviation between the desired working surface and the actual reflector of antenna panels, which can be evaluated with
different indicators, such as flatness, pose error, maximum deformation, and RMS deviation. After considering practical engineering ad-
vancements and deformation distribution characteristics [41,42], the RMS deviation is chosen as the metric to assess the surface accuracy
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Fig. 1. Structure of the spaceborne SAR antenna.
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Fig. 2. Spatial heat fluxes and thermal conduction of an orbiting SAR satellite.

of antenna panels in this study. Assuming that there are n sample points, the RMS deviation I" in the global coordinate system Og-XgY¢Zg
is defined as

1« 1«
= HZ(Axf—i—Ay?—i—Azf): HZ(W?W,-), (1)
i=1 i=1
where w; = [Ax;, Ay;, Az;]T is the position deviation of each point along the three coordinate axes.

Under this background, our study focuses on optimizing the on-orbit surface accuracy by link adjustment. Aimed to minimize the RMS
deviation, the optimization requires finding the proper position vector and the corresponding adjustment vector, which are discrete and
continuous variables, respectively. Therefore, the problem actually belongs to a mixed-variable optimization problem.

To conduct the active optimization adjustment, three significant challenges must be tackled: (1) How to determine the temperature
field of the on-orbit antenna with complex boundary conditions under the action of spatial heat fluxes? (2) How to construct the thermal-
structural coupling model for the whole overconstrained system to achieve the surface accuracy prediction? (3) How to develop an
effective mixed-variable optimization algorithm for finding the superb combination of dimensional adjustment? In what follows, our
efforts will be devoted to breaking through those barriers.

3. Thermal analysis and heat transmission

When a satellite enters the predetermined orbit, the antenna panels inevitably suffer from solar radiation, Earth-emitted radiation, and
Earth-reflected radiation. To reveal the impact of the spatial thermal environment on the antenna panel, this section will characterize
these external heat fluxes and construct the thermal transmission model.

3.1. Quantification of heat fluxes in space

As illustrated in Fig. 2, the spaceborne antenna travels periodically from the shadow region to the sunshine zone, and its absorbed
solar radiation flux qs is formulated as

qs =apSs fs cos bs, (2)

where the solar heat flux S is at an average of 1353 W/m? [37]; ayp is the solar absorptivity; the view factor fs [30] depends on the
antenna attitude; 6; denotes the incident angle of sunlight.
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Fig. 3. Calculation of the Earth-reflected radiation flux.

When the sunlight strikes the Earth, part of it enters the atmosphere, while the rest bounces back into space. The Earth-reflected
radiation also affects the low-orbit satellite, and the corresponding heat flux g received by the antenna is determined as

quapssab//cow“ COSY32 COSV33 2 i pdade, 3)
@ 0

wL?

where the albedo factor o, is about 0.35 [39], and the radius R, of the Earth is 6371 km. As shown in Fig. 3, the spherical coordinate
system (¢, 0) is constructed to describe the earth surface, and the distance L is calculated as

L:\/Rg—i—(Re—kHc,)2 — 2Re (Re + Hy) cos 9, (4)
where H, is the orbital height of the satellite. Particularly, ¥31, ¥32 and vr33 [43] are given by

cosfcos¢ +sinfsingcosp, 0<n<m/2

cosy31 = 0, m/2<n<m
Re + Hq Re
J—— [ — < <

0 Y3y = coso T O0<ai;<m/2 -
0, w/2<u1<m :

1 Re . .
—| (R Hgq — Re cos6) cos ————sin@sinBcosep |, 0<ar<m/2
COSI//33: L|:( e+ Hqg e ) ﬂ+Re+Ha ﬂ ¢:| =02 = /

0, w/2<wx<m

Analogous to the solar radiation, the Earth also emits radiation with the heat flux S, of 237 W/m? [40]. As illustrated in Fig. 3, the
absorbed Earth-emitted radiation flux q. for the spaceborne antenna is expressed as

oS

Ge = %//(cos@cosﬂ + sin@ sin 8 cos ) sin6dode. (6)
¢ 6

where o is the absorptivity ratio, and 8 denotes the angle between the line connecting the Earth with the antenna and the inner normal

of the panels.

Except for these external heat sources, the exothermic antenna also transfers thermal energy into outer space. Based on the Stefan-
Boltzmann law, the radiation flux g, is described as

Gr=Gpo (T¢ — T2, (7)

where ¢, denotes the antenna emissivity, and o represents the Boltzmann constant. In addition, Ts; and T. denote the structural and
ambient temperatures, respectively.

3.2. Analytical model of thermal transmission

Since outer space is almost a vacuum that prevents thermal convection, the heat is only transferred by radiation and conduction. The
three thermal boundary conditions in the spaceborne satellite are illustrated as

Bi:Tx,y,2)=To

oT oT oT
By :kx§nx +kya—ny -HQEHZ =qo

oT b oT 4 4
B3 :kxanx +I<y@ny +kz&ﬂz =G0 (T" =T7)

, (8)

where T is the temperature field; To and qo are the initial temperature and the heat flux density of the boundary, respectively; k, ky and
k, denote the thermal conductivities along the three coordinate axes, respectively; ny, ny and n, correspond to the directional cosines of
the unit normal vector.
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For the support links, the temperature field is governed by

9*T aT
ksAsW - SSOPS(T4 - T?) + (s +qf+ge+qr)Dscosys = pSCsAsav 9)

where ks, g5, and cs denote the axial conductivity, surface emissivity, and specific heat of links, respectively; ps is the material density;
P, Dg, and A represent the perimeter, diameter, and cross-section area, respectively; s denotes the angle between the panel and the
corresponding link. When the temperature field achieves a steady state, it yields dT/dt = 0. According to the variational principle, the
solution of Eq. (9) makes the following function at its minimum:

2

1—/ Leend (T +] 0 PsT®> — (qs +qf +qe +qr)DsT + YRS P (10)

s = FRsAs\ oy 5§s s s +qf +qe +dr)Us PsCs S ot .
1

Subsequently, the support links are divided into finite thermal elements with two nodes [T;, T;], and the linear interpolation [27] is
applied to construct the temperature distribution inside each element. As suggested by [44,45], T4 = 4T(3,T —3T61 is employed to eliminate
the fourth-order term. On this basis, the thermal balance equation of each support link is formulated as

(S +165)05 =@, .
where the thermal transfer matrices are expressed as
ksAT 1 —1 2 2 1
e _ °ST7 e __ “ er3
K] = e |:_1 1 i| K_3§50P51Tr[1 2],
1 ; 3 1 (12)
Q = 5 Ps(@s+s + e +a)l° [ ; } + 560 Pl°Ty [1 ] :
Furthermore, by combining Fourier’s theorem with the latter two thermal boundary conditions, one can also obtain the temperature
field of antenna panels by minimizing the function:

1 AT \? aT\? aT\? aT
Ip:if |:k] (a) +k2 <@> +k3 <£> —2,0pT(Qp—Cp§>:| dQ
Q

’ . , (13)
—/gpo (§T5—TT;‘> dS—/T(qH—qu)dS
Sp p

where ki, kz, and k3 are the thermal conductivities of panels along the three coordinate axes, respectively; pp and c, are the material
density and the specific heat of panels, respectively; Q, is the strength of internal heat source; q; and g, denote the total thermal fluxes
of the lower and upper surfaces, respectively; S, and €2, are the surface area and the volume of panels, respectively;

According to the FEM, the temperature distribution of antenna panels can be characterized by the shape function N, and the nodal
temperature vector qf as below:

T(x,y,2) =Np(x, ¥, 2)q5%. (14)
By uniting Egs. (13)-(14), the governing equation for the steady-state thermal transfer is derived as
K.q5 = Q5. (15)

where the element matrices are determined by

Ke—/ k gT N +k %T N +k ET N dQ
L T\ ax ax 2\ oy dy 3\ %z 9z
Qe

Q= / PaQaNTdQ + f quNTds + / qNTds + / spopTANTdS
Qe s¢ s¢ se

(16)

Within the standard finite element framework, the matrices and nodal vectors are assembled to establish the heat transfer equation
for the whole system, which takes the form as

Krqr =Qr (17)

where Kr is associated with K§, K and K%; qr is composed of all nodal temperatures; Qr depends on Qf and Qj. According to the above
formulation, the overall temperature field can be completely determined by the Newton-Raphson algorithm [46].

4. Surface accuracy prediction for the spaceborne antenna
After determining the temperature field of the spaceborne antenna, we will further develop the thermal-elastic coupling model with
the absolute nodal coordinate formulation (ANCF). Considering the high nonlinearity that exists in the deformation analysis, an improved

computational strategy will also be proposed to calculate the thermoelastic force efficiently in this section.

5
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Initial configuration

Fig. 4. Two-node beam element with the ANCF.

4.1. Thermoelastic deformation of support links

For comprehensively capturing the deformation of support links, it is suggested to utilize the ANCF beam element to describe the
structural flexibility [47,48]. Unlike the conventional finite element method based upon the infinitesimal rotation assumption, the ANCF
directly adopts position gradients instead of rotation angles to guarantee the continuity of the strain field [49]. As a milestone in the
development history of flexible multibody modeling, the ANCF method offers many advantages, including but not limited to, an exact
geometric description [50], a global representation [48], the capability of increasing the interpolation order without increasing the number
of nodes [51], and the ability to solve linear or nonlinear strain-displacement relationships [52,53]. Given these advantages, the ANCF has
been widely applied to model aerospace structures [30,48,54]. Herein, a thermal integrated beam element with the ANCF is developed to
reveal the coupled thermoelastic behavior of support links.

Since previous researches [27,47] have demonstrated that beam elements are more suitable than link elements in characterizing support
links, the ANCF beam element with a complete gradient rather than a deficient gradient is adopted in this study. As shown in Fig. 4, the
structural deformation of the ANCF beam element is directly characterized and evaluated in the global frame. The arbitrary coordinate
vector r is formulated as

T
art\T for\T [or\T ara\T o \T [orp\T
r=sxy.2e=Sxy.2|r. () . () . (%) 5 (52) . (52) . (52) | . (18)
ax ay a9z ax ay 0z
in which the shape function matrix S [55] is associated with the local coordinates x, y and z. For the beam element, its generalized
external force Q can be induced from the principle of virtual work, which is given by
Q@ =S"(x,y,2)Fo, (19)

where Fy denotes the original external force vector.
From the perspective of continuum mechanics, the deformation gradient matrix J of the beam element is a function of the derivative
of the position vector:

ar (drg\ ! 3. 095, 9Sa 41
J=&(a> =[Fe Be Beln' (20)

where the global coordinate vector rg is defined in the initial configuration, and x denotes the local coordinate vector. Accordingly, the
Green-Lagrange strain tensor &, can be calculated by

elS,e—1  efsze elSre
1 f
em= iaTj = 5 elS,e—1  e'See |. (21)
sym e’Sce —1

More intuitively, the symmetric property allows the tensor &, to be recast into a compact vector form:

0 T
€, =[&11, €22, £33, 2612, 2613, 2623], (22)

where g is the (i, j)-th component of &,. Considering the thermal expansion effect, the above strain vector is modified as

&p = [e11 — AT, 22, €33, 2612, 2613, 2623]" (23)

where AT denotes the corresponding temperature difference along the axes of support links, and z; denotes the thermal expansion
coefficient.

According to the constitutive relationship between the strain and stress tensors, the strain energy U of the ANCF beam element is
expressed as
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1
U= E/S};Ebsbdv
\'%

A+2
= f |: 5 K (511 +&5,+ 833) +2u (812 e+ 523) +A(e11622 + 11633+ 822833)] dv+: (24)

A+20 2
3 (ATstws)” — AATsws (811 + 22 + €33) — 2uAT w5811 | dV

where the elasticity matrix E, depends on Lame constants A and u. By differentiating Eq. (24) with respect to e, the mapping from the
nodal deformation and the thermoelastic force Q is constructed as follows:

ou
Q= Se =Kp(e, ATp)e. (25)

Notice that the stiffness matrix K, not only requires the volume integrals of large matrices, but also varies with the nodal coordinates
and temperature distributions. What is worse, multiple iterations are generally inevitable for solving and optimizing the displacement
field. If the elastic force is directly calculated via the above formula, the computation process will be very tedious and time-consuming
due to the high nonlinearity and strong coupling. To tackle this problem, an improved solving strategy will be proposed to isolate the
nodal coordinates and temperature variables from the numerical integration.

For calculating the elastic force efficiently and accurately, the whole stiffness matrix K}, is firstly decomposed into the following three
parts:

Ky(e, AT) =K; + Ko AT + Ks(e), (26)
where the matrices Ky, Ky and K3 are formulated as

3L+2
Ki=— —“/(sa+sb+sc)dv

K, = —Awsf(sa +Sp+Sc)dV — 2Mw5/sadv
Vv

" t2
+ ol f (Sqe€™S, + Spee's, + S ee's,) dV+ . 27)

K3 =

/ Sqee’S; + Ssee’S. + Syee’S, + Syee’S, +Scee'S, + Scee’S,) dV +
v
/ Sq-+Sh) ee™S; + (S. +ST) ee™S] + (S + ST ees; | av

Obviously, K and K; are constant because Sg, Sp, S, S4, Se and Sy are fully determined in the initial configuration. For the coordinate-
dependent matrix K3, we further reconstruct its (i, j)-th component into the quadric form as below:

[K3(e)];; = e"Gye, (28)

where G}é is given by

i A+2
o= / (00T (57),+ 00T (5]), + ST (5T) Jav+
/ ST (S]); + ST (ST); + )T (S5); + ST (S1); + S0 (85); + Sl (]); ] av+. (29)
14
" T
2l [(sd+s5>f(s5>,-+<se+sz>?<sz>,-+(sf+s}),. (s})j]dv
14

It is pointed out that G;{ is also an invariant matrix that can be directly invoked after initialization. Consequently, the improved formula
successfully transforms the complex calculation into simple matrix multiplications. Moreover, the symmetry of K; (e) indicates that only
the invariant matrices corresponding to the upper triangle and diagonal components of K3 need to be calculated.

As formulated above, both the nodal coordinate vector e and the temperature difference ATs are completely eliminated from the
volume integrals. By storing the invariant matrices Ky, K, and G;{ in advance, only simple mathematical manipulation is required instead
of repeated integration operations. In addition, one can readily determine the Jacobian matrix of the thermoelastic force without resorting
to numerical operations, because the same invariant matrices appear in its exact analytical solution:

24 24

a 9 T
(_Q> =_Q‘—(I(1+I(2ATS ,k—i-ZZes[ b+ (6l,) ] ej. (30)
de ik sk

j=1s=1
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Initial configuration Deformed configuration

Fig. 5. ANCF thin plate element with four nodes.

Therefore, the developed computational strategy can significantly improve the solving efficiency of thermoelastic deformation for the
support links.

4.2. Thermoelastic deformation of antenna panels

Since the thickness-width ratio is less than 0.1, the thin plate element is suitable for describing the thermoelasticity of antenna panels.
In order to release the assumptions on the deformation of the cross section in the traditional incremental FEM [56], the ANCF is still
applied to precisely construct the displacement field of plate elements. On this basis, the corresponding computational strategy of the
thermoelastic force and the Jacobian matrix is also developed for the plate element to improve the solving efficiency of the whole
procedure.

Within the ANCF framework, the four-node thin plate element possesses 36 degrees of freedom. As depicted in Fig. 5, an arbitrary
position vector r in the ANCF thin plate element is described as

T
orq T ory T or; T or; T ars T ors T org T org T
r=S,(x,y)e=Sp(x,y) I‘L - ) -\ == ,l‘g, - ) -\ == ,r§, - ) |\ = ,1‘1, -— | | == ) (31)
ox oy X ay X ay X ay
where the shape function S, [57] is associated with the local coordinates x and y, while r; (i =1,2,3,4) is the global position vector.
Similar to the ANCF beam element, the generalized external force Q, for the plate element is determined by

Q, =S, (x.y)Fo. (32)

It is known from the Kirchhoff plate theory [58] that two parts are involved with the strain energy of the plate element. The first
part accounts for the normal and shear deformations, while the second part is induced by the bending and twisting effect. Given the
constitutive matrices E; and E,, the strain energy U can be calculated by

1 1
U= E/eTEsedV +3 /KTEKKdV. (33)
"4 "4

The strain tensor & after incorporating the thermal expansion effect is revised as

T
€ = [em 19, 26 ] = 1/ar\ for\ 1 1 or\ far\ 1 [or\ [or [Ty, AT,y 0] (34)
T bxeryestol =i \ex ) \ax) 272 \ay ay) 2 \ox ay A At AR B

where ATy and ATy denote the temperature differences along the x and y axes, respectively; @y and @, correspond to the thermal
expansion coefficients of antenna panels in the two directions. Besides, the curvature k is formulated as
22r\T 22\ 22 \T T
T (W) n (W) n (Bxay) n or or
Kk = [Kxx, Kyy, 2kxy] = > 2 3 , N=_—x —. (35)
nl Il | ox 9y

As to the ANCF thin plate element, the generalized thermoelastic force Q. is determined by

ou
Q. = P Q. +Q., (36)
e
where the components Q. and Q, are written as

E ae o€ 2E o€ VE ae a€
Q£=/—<5xxi+5 yy>+ & xy+—<5xxi+€yy xx)dv
e e
1%

1—12 de Y de 1+v ™ e ' 1-12

Eh3 ( dicxx aKyy> En3 dkxy VER3 (Kxxaxyy Kya/cxx> v

(37)
Q“=/12(1—v2) e TW e )T AT e T 12— 12
Vv
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Here, h, E, and v represent the thickness, Young’s modulus, and Poisson’s ratio of antenna panels, respectively. To be more specific, the
partial derivatives of strain and curvature tensors are given by

1 o Tn+ om\" o] 3 oo\ com\'
xx —sTs,e de — |n|3 | \ 9x20e de) ax2 | n|° \ 9x2 de
ae

T T T T

06y _grg o | Owy _ 1 9’r e ar| 3 821‘ LA (38)
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where Sy and Sy are the derivatives of §, with respect to x and y, respectively.

It can be found that high nonlinearity exists in the relation among the thermoelastic force, the nodal coordinates and the temperature
differences. Considering that the direct numerical differentiation is neither efficient nor accurate, an enhanced computational strategy is
further developed to solve the thermoelastic force and the corresponding Jacobian matrix for the plate element.

For recasting the expression of the thermoelastic force into the simple matrix multiplication, the following matrices are introduced for
ease of representation:

=5:S..N=S§.S, H=S.S,. (39)

Thereby, the partial derivatives of strain tensor can be evaluated by

36 36
a€ aey 0€
agj_zmk,ek, znmek, fey _ (zn+ zn) (40)

where M; refers to the (k, i)-th item of M, and similar definitions are possessed by Ny; and Hg;. Subsequently, the nodal coordinates
and temperature differences are extracted from the volume integral. For the i-th elastic force (Qg); originated from normal and shear
deformations, it can be reconstructed as

36 36 36 36 36
Q)i=Y_ > > [(ADikmn + (A2)ikmn + (A3)ikmn] €xemen — (14 2ATywy) Y (Bu)jiej — (14 2ATywy) > (By)jiej.  (41)
k=1m=1n=1 j=1 j=1

Specifically, the invariant matrices are derived as

E
(A1 ikmn = 20— 7 / (Mg Mp; + N Npi) dV
v
vE
(A2)ikmn = m (NkmMni + MkmNni) dv
14
E
(A3)ikmn = 2010 (HgnHin 4+ HgmHni) V- (42)
v

E
(B1)ji = m/(Mji + VNji)dV
\%

E
14

where (Aw )ikmn (W =1, 2, 3) corresponds to the in the (i, 1296k 4+ 36m +n - 1332)-th entity of Ay, and (Bs)j; (s =1, 2) denotes the
(j, i)-th item of Bs. It should be emphasized that Aj, Ay, A3, B, and B, are constant matrices, allowing to be calculated and stored in
advance. As formulated above, the Jacobian matrix of (Q:); can be further derived with the same invariant matrices in an explicit form:

36 36
9(Qs)i
3%5 : Z Z (Al)jmm + (AZ)]mm + (AB)]mm + Z(Al)lmjn + 2(A2)1mjn + (A3)1m]n + (AB)Umn] emen (43)
J m=1n=1

—[(1+2AT, @) (B1) ji + (1 4+ 2ATywy) (By) ji|

In accordance with the procedure of Q., one can deduce the efficient calculation formula of the thermoelastic force Q. resulting from
the bending and twisting. In summary, by introducing the invariant matrices and removing all variables from the integral, the proposed
solving strategy not only facilitates the accurate calculation of thermoelastic force and its Jacobian matrix, but also significantly lightens
the computational burden.
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Fig. 6. Constraint formulation between the joint and the panel.

4.3. Determination of the surface accuracy

Like the assembly process of FEM, all the ANCF elements can be fully incorporated [49]. Besides, the Lagrange multiplier technique en-
ables integrating the geometric constraint equations @ into the governing equation of the whole structure. Consequently, the thermoelastic
deformation of the antenna system is summarized as

Quw(q.qr) — Qs + P =0 (44)
®(q)=0 ’

where q consists of all nodal coordinate vectors, and A denotes the Lagrange multiplier vector. Q,, and Qg are the generalized matrices

of thermoelastic force and external force, respectively. ®q denotes the Jacobian matrix of the constraint equation set. Note that the

temperature differences AT,, ATy and AT, are determined by the temperature vector as shown in Eq. (17), and thus Qy is the function

of both q and qr.

In particular, Qy originates from the dimensional adjustment of support links. If the length of the i-th link is increased by Al;, the
operation is equivalent to imposing an axial force F; = E;AAl;/l; [7], where E; is the elastic modulus and I; represents the design length
of the i-th link. For description, the dimensional adjustment vector is defined as a = [Aly, Aly, Als, Alg, Als, Alg, Al;]T, which directly
determines Qy.

Without loss of generality, the geometric relationship between the self-locked joint and the antenna panel is elaborated to illustrate
how to obtain the constraint equations ®. As depicted in Fig. 6, the global position vectors r"P and r{, of the connection points q' and q,
respectively, must coincide with each other. Moreover, along the joint axis, two unit direction vectors v\ and v/ can be defined for the
self-locked joint and the antenna panel, respectively. These two vectors are always parallel to each other, i.e., vi x v/ = 0. Mathematically,
the cross-product can be fully alternated by three independent dot-product equations. Hence, the constraint equations of the self-locked
joint are formulated as

o@.a) =@, )T @)V @V whTv| =0, (45)

where v and v} are two orthogonal vectors perpendicular to v/, and v} is similarly defined with respect to v/.

As formulated above, the Newton-Raphson iterative algorithm is also applied to obtain the nonlinear thermal-structural response. It is
worth noting that the preceding sections have explicitly represented the thermoelastic force and the Jacobian matrix with invariant ma-
trices. The proposed computational strategy not only avoids the repeated integral operation in Eq. (43), but also enables readily obtaining
the correction value without tedious numerical differentiation during the iteration process. Therefore, the solving time of the displacement
field is greatly shortened.

Under the interaction of the thermoelastic effect with the geometrical nonlinearity, once all nodal coordinates are determined, the
position deviation w; = [Ax;, Ay;, Azi]T can be extracted with the Boolean matrix Cj, i.e., w; = C;q. According to the definition of Eq. (1),
it is easy to quantify the RMS deviation of the antenna. As such, the relation between the surface accuracy and the input parameters has
been comprehensively revealed, which is represented as

'=f(agh), (46)
where the input vectors g and h represent the intrinsic structure parameters and external heat fluxes, respectively.
5. Surface accuracy optimization for the spaceborne antenna
After developing the surface accuracy prediction model, this section will further propose an enhanced PSO algorithm for the active
shape control of antenna panels. Taking the advantages of the evolutionary techniques, the classical PSO is endowed with novel hybrid
encoding and reproduction schemes for solving the mixed-variable optimization problem. Moreover, an adaptive tuning approach is put

forward to update the algorithm parameters for achieving robust optimization performance.
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Fig. 7. Encoding and reproduction schemes for the mixed variables.

5.1. Optimization model of the active surface adjustment

Aimed to minimize the RMS deviation, the optimization requires finding the proper position vector p and the corresponding assignment
vector d. Specifically speaking, p = [p1, P2, P3, Pa, Ps, Ps, P7]° is a Boolean vector where “1” indicates the link is to be adjusted. The
assignment vector d = [d1, d2, d3, d4, ds, dg, d7]7 denotes the desired length variation on the condition that all links are adjustable. In this
manner, the actual dimensional adjustment vector can be determined as a = p x d, where * represents the Hadamard product.

Besides, there are three practical constraints for the system. First, the maximum displacement of each point is restricted by the pre-
scribed threshold Zny.x. Secondly, to ensure structural reliability, the dimensional adjustment of links is confined within the interval
[dmin, dmax]. Thirdly, considering the energy consumption of actuators, it is preferred to create a tradeoff between the attainable surface
accuracy and the number of adjusted links, which means that an upper boundary n, (n, < 7) exists for the latter.

In summary, the optimization problem of the surface accuracy is formulated as

find p=(p1.p2. P3. P4, P5. P, P71
d = [dy,da,d3,d4,ds, ds, d7]"
] n
= (wiwi) = f(p'd, g, h)
i=1
s.t. Wj < Wpmax > (47)
pi=0orp;i=1 (i=1,2,---,7)

7
Zpi =g
i=1

dmin <di <dmax (=1,2,---,7)

min I'=

Note that the vectors p and d are discrete and continuous variables, respectively. Therefore, the model belongs to a mixed-variable
optimization problem.

5.2. Hybrid encoding and reproduction schemes

To overcome the defects of the pure relaxation or discretization method, hybrid operators are developed to tackle discrete and con-
tinuous variables separately. To accommodate the standard PSO framework [59], the position vector of each particle is encoded as
Xi =[p1,p2,...,P7,d1,d2,...,d7]. For the first seven parameters that describe the combination of link adjustment, the probabilistic
learning scheme is proposed to reproduce these discrete variables. For the remaining parameters that denote the dimensional adjustment
values, the biomimetic learning scheme is developed to generate new continuous variables. The detailed process is described in Fig. 7.

11
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Table 1

Structural parameters of the antenna system (Unit: mm).
Parameter Symbol Value Parameter Symbol Value
Length of the auxiliary link Iy 1026.41 Length of each antenna panel Ip 1400.00
Length of the internal link I, I 1081.26 Width of each antenna panel wp 834.50
Length of the middle link I3, 14 630.14 Height of each antenna panel hp 20.00
Length of the external link Is, Ig 1288.10 Diameter of the support links d 25.00

Drawing inspiration from the cooperative evolution, we make the update of discrete variables benefiting from the historical record
of the whole swarm. To be more specific, the higher probability a discrete value appears in history, the more likely the corresponding
variable will choose it. According to the basic criteria, the reproduction process for the discrete variables is designed as follows.

In the beginning, all values for these discrete binary variables are initialized with equal probability, i.e. P;,(0) = 1/2. Here, P; (k)
denotes the probability that the i-th variable is set as the n-th candidate value in the k-th iteration. In the subsequent iterations, the
dominant position vectors of the superior particles will be learned by new particles. To this end, we record the frequency R;j that the
i-th variable is assigned to the n-th value, and the assignment probability is updated by

Pin(k+1) = a;Pin(k) +2(1 — ai)Rin/Np, (48)

where «; is the assignment coefficient, and N, is the population of the particle swarm. It is highlighted that the first and second terms
in the updating rule contain the historical and current search information, respectively. This combination seeks a trade-off between
exploration and exploitation.

Compared with the operator of discrete variables, there are more variants of PSO for processing continuous variables. Most of these
improved algorithms try to avoid premature by increasing the population diversity. However, fully random learning may deteriorate the
convergence of the optimization algorithms. To strike the balance between warm diversity and convergence performance, the particles not
only learn from the global record, but also draw on their own experience. As suggested by [60], the updating rules for the velocity V; and
the position X; are modified as

Vitk +1) = wy Vit + 26 [Py (k) — Xi ()]

(49)
Xitk+1) = X;(k) + Vi(k+ 1)

where Py (k) is randomly selected from the excellent personal positions of the k-th generation; wy is the inertia weight, and the random

number ¢, is distributed in [0, 1]. For a complete explanation on the velocity and position of particles, interested readers can refer to

[61,62].

As formulated above, the assignment coefficient «; and the inertia weight w, have a significant influence on the optimization perfor-
mance. Moreover, it is inappropriate for all particles to set these parameters to fixed values. Hence, an adaptive parameter tuning strategy
is developed to find suitable o; and w, for the PSO. The basic idea originates from incorporating historical search information to yield
random parameters with good convergence. Specifically, the average values &; and w, from historical optimal particles are initialized as
0.5. In each iteration, the two parameters will be generated by Student’s T distribution or Gaussian distributions. The bell-shaped Gaussian
distribution with a small variance will make the parameter approach its mean value, while the Student’s T distribution has a fatter tail so
that values with more diversity will be produced.

5.3. An enhanced PSO algorithm for the mixed-variable optimization

Taking the advantages of the penalty technique in simplicity and implementation [63], the inequality and equality constraints are
transformed by adding the violation terms to the original fitness function. Finally, the enhanced PSO algorithm for the mixed-variable
optimization is summarized in Fig. 8.

6. Case study

The proposed active optimization adjustment method will be demonstrated in this section. Firstly, the developed surface accuracy
prediction model is examined by the experimental results at ambient temperature. On this basis, the on-orbit dimensional adjustment is
implemented to optimize the antenna surface accuracy, and the analytical results show the superiority of the established methodology.

6.1. Introduction of structural and thermoelastic parameters

Taking a typical SAR antenna as an example, the active optimization adjustment is to be investigated to verify the technical feasibil-
ity. In compliance with the actual product configuration, the structural parameters of the antenna system are given in Table 1, and its
thermoelastic characteristics are provided in Table 2. In practical engineering, the negative manufacturing tolerances are designed for all
support links.

Considering the reliability of the antenna system, the allowable adjustment ranges for the auxiliary, internal, middle, and external links
are [—3.08, 3.08] mm, [—3.24, 3.24] mm, [—1.89, 1.89] mm, and [—3.86, 3.86] mm, respectively. In addition, the antenna demands that
the RMS deviation of two panels should be better than 2 mm, and the maximum deformation in the antenna panels is required to be less
than 18 mm.

12
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Fig. 8. The developed framework for the surface accuracy optimization.

Table 2
Thermoelastic characteristics of the antenna system.

Thermoelastic property Support links Antenna panels

Symbol Value Symbol Value
Mass density [kg/m?] Os 1.81 x 10° Pp 2.73 x 10°
Elastic modulus [N/m?2] Es 8.40 x 1010 Ep 7.17 x 1010
Poisson’s ratio Vg 0.307 Vp 0.330
Specific heat [J/(kg K)] Cs 952 cp 880
Surface emissivity Gs 0.78 Sp 0.95
Thermal radiation absorptivity o 0.72 ap 0.79
Thermal expansion coefficients [K~!] s 48 x107° @y, Dy 2.6x107°
Thermal conductivity coefficients [W/(m K)] ks 25.75 ki, k2, k3 17.31

6.2. Verification of the surface accuracy prediction at ambient temperature

In order to lay a solid foundation for the active adjustment, the effectiveness and adaptability of the accuracy prediction model are
first confirmed by the ground test under ambient temperature. As shown in Fig. 9, we utilize the laser tracker Leica TN90® to measure the
surface deviation of the antenna panels. To simulate the dimensional adjustment, the gaskets with different thicknesses are to be placed
into th