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Inevitable disturbances in the spatial thermal environment will seriously degrade the surface accuracy 
of satellite antennas. Unfortunately, the ground pre-adjustment cannot adaptively guarantee the antenna 
performance under alternating thermal loadings. To tackle the challenge, this study proposes an active 
optimization adjustment method to achieve the required surface accuracy for spaceborne antennas. 
Starting from the comprehensive analysis of external thermal fluxes in outer space, the heat transfer 
model is firstly established to acquire the temperature field of the antenna system. Subsequently, 
considering the thermoelastic effect and the geometrical nonlinearity, the antenna surface accuracy is 
predicted. In particular, the thermoelastic forces induced from temperature changes and dimensional 
deviations are precisely determined by the absolute nodal coordinate formulation. Moreover, an efficient 
computational method with invariant matrices is developed to accelerate the prediction. On this basis, 
we construct the on-orbit active adjustment model to compensate for the effect of thermally induced 
deformation on the surface accuracy. A mixed-variable optimization algorithm is further put forward to 
find the optimal strategy of dimensional adjustment. Finally, a case study with simulation analysis and 
experiment verification demonstrates the feasibility and superiority of the proposed surface adjustment 
method.

© 2023 Elsevier Masson SAS. All rights reserved.

1. Introduction

The spaceborne synthetic aperture radar (SAR), with unique advantages of spatial resolution and weather adaptability, has revolu-
tionized remote sensing, satellite communication, and earth observation [1,2]. As mission-oriented challenges continue evolving, it is 
imperative to further upgrade the integrated performance of the SAR system. Physically, the Ruze formula [3] indicates that the gain of 
the main lobe directly depends on the antenna surface accuracy. Under this background, the surface root-mean-square (RMS) deviation is 
of a harsh requirement for achieving satisfactory performance [4]. Taking the antenna operating at the Ku-band as an example, the desired 
RMS deviation is only 0.33-0.50 mm [5]. However, the spaceborne antenna is inevitably exposed to extreme heat loads, and the thermally 
induced deformation will seriously deteriorate the surface accuracy [6]. Hence, how to actively conduct the deformation adjustment and 
adaptively optimize the surface accuracy of the antenna has been a great concern of practitioners [7].

In the past decade, several studies have explored mechanical compensation strategies to reduce the surface deviation of antennas. 
According to the technical feasibility, the current methods are based on either ground pre-adjustment or on-orbit active adjustment. Du 
et al. [8] presented an assembly adjustment strategy based on the propagation relationship between the surface deviation of the mesh 
reflector and the dimension variation of cables. To minimize the overall distortions of the mesh antenna, Xun et al. [9] established a fast 
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predictive control algorithm with the electromechanical coupled dynamic model. Zhao et al. [10] developed a link adjustment approach 
to simultaneously optimize the surface accuracy and deployment reliability. Yu et al. [11] put forward a novel assembly accuracy control 
method for the SAR antenna, which allows to find the sparse adjustment combination with the same deviation. However, all these ground 
pre-adjustment strategies ignored the influence of thermally induced deformation on the antenna structures. In fact, since the spaceborne 
antenna periodically travels through the sunlight and shadow regions, the time-dependent thermal loads are the main cause of surface 
accuracy degradation [12,13]. Furthermore, the determined pre-adjustment under specific conditions cannot adaptively compensate for the 
surface accuracy in the ever-changing thermal environment [14].

To overcome the deficiencies of ground adjustment, the active adjustment strategies are investigated for the orbiting antennas. Wang et 
al. [15] and Song et al. [16] incorporated piezoelectric actuators into the cables of mesh reflectors for the on-orbit shape control. In addi-
tion, the electromechanical materials and shape memory alloys are also promising for regulating antenna deformation [17]. Inspired by the 
pioneering works of Padula et al. [18] and Liu and Hollaway [19], Zhang et al. [20–22] conducted integrated structural-electromagnetic op-
timization for the shape control of mesh reflectors. The radiation pattern degradation induced by random structural errors was quantified 
with enhanced iteration efficiency. Tanaka et al. [23] estimated the surface deformation from the changes in antenna gains, and further 
developed a correction method based on the sensitivity matrix. Although this method reduces the calculation cost compared to the tradi-
tional pseudo-inverse method [24,25], it demands adequate measurement of antenna deformations, restricting its application to on-orbit 
adjustment [26]. Lu et al. [27] proposed an on-orbit mechanical compensation method for the planar phased array antenna. However, the 
interaction between the support trusses and antenna panels was not considered, and the control performance was weakened. Treating 
the temperature distribution in the spaceborne antenna as an interval variable, Yang et al. [28] put forward an active adjustment method 
by incorporating the min-max concept with the incremental equilibrium equation. Considering the thermal effect and truss deformation, 
Nie et al. [29] optimized the structural parameters for mesh reflector antennas, which could also be transferred into the active shape 
adjustment. However, the above studies are built on the assumption that the temperature distribution is uniform throughout the antenna, 
whereas the on-orbit temperature field is actually uneven [30,31]. As to the surface accuracy compensation of spaceborne SAR antennas, 
the method accounting for the spatial-temporal characteristics of the temperature field has not been reported yet.

As can be seen from the above introduction, the premise of thermal-structural analysis for the spaceborne antenna is to determine 
the external thermal loadings and evaluate the temperature distribution [32]. The most commonly used approaches for thermal analysis 
are the thermal network method (TNM) and the finite element method (FEM) [33,34]. The TNM is suitable for simple thermal problems 
without complicated boundary conditions [35], and it needs to correct the selected parameters [36]. In contrast, FEM adopts interpo-
lation functions to integrate the geometric model into the thermal analysis, making it more feasible to solve the temperature field of 
complex structures [37]. For example, Maksimov et al. [38] constructed FE-based theoretical formulas to quantify the thermal effect on a 
microstrip antenna. The FE software was employed to determine the transient temperature distribution of the AstroMesh antenna in [39]. 
Yu et al. [40] constructed the dynamic heat conduction equation for an on-orbit antenna subjected to time-variant thermal excitation. 
Although these numerical or theoretical models provide thermal information for key components such as beams or plates, it remains to 
systematically discuss the temperature field of the entire antenna, including the deployable support structure and the reflector panels.

As reviewed above, the existing shape control techniques are not feasible for the active adjustment of on-orbit antennas. Further-
more, none of the previous studies have comprehensively revealed the thermal-structural coupling effect on the surface accuracy. To fill 
these gaps, this research proposes an on-orbit optimization adjustment method to achieve the required performance for spaceborne SAR 
antennas. The surface accuracy prediction model that incorporates the thermoelastic effect with the geometrical nonlinearity is firstly 
constructed to determine the structural deformation in the service environment. Considering the prescribed constraints, the active shape 
adjustment problem is further transferred into a mixed-variable optimization problem. Afterward, an enhanced particle swarm optimiza-
tion (PSO) algorithm is proposed to effectively minimize the on-orbit surface deviation.

The main contributions of this work are threefold. (1) Distinguished from previous studies that only conducted the shape control 
at ambient temperature, a comprehensive method is proposed to actively adjust the surface accuracy of on-orbit antennas, breaking 
through the limitation of the ground pre-adjustment. (2) Compared with the preceding thermal-structural analysis for antennas, the 
uneven temperature field at different orbital positions can be theoretically calculated, discarding the unrealistic assumption on the tem-
perature distribution. (3) Taking advantage of the hybrid encoding scheme, an enhanced PSO algorithm for tackling the mixed-variable 
optimization problem is developed with an adaptive parameter tuning approach, which shows competitive performance in determining 
the adjustment strategy.

This article is structured as follows. To start with, the antenna structure and the focused problem are elaborated in Section 2. After 
quantifying the thermal fluxes in outer space, Section 3 derives the heat condition model for acquiring the temperature distribution. Sec-
tion 4 formulates the thermoelastic deformation of the antenna system and proposes the surface accuracy prediction model. Subsequently, 
an enhanced PSO algorithm is developed to optimize the surface accuracy in Section 5. For demonstrating the validity of the proposed sur-
face accuracy adjustment method, a case study is provided with numerical simulation and experimental verification in Section 6. Finally, 
Section 7 summarizes the concluding remarks.

2. Problem elaboration

As depicted in Fig. 1, the spaceborne SAR antenna to be investigated in this study, which belongs to the active phased-array antenna 
(APAA) type, consists of the load module, support links, and antenna panels. Apart from enhancing the structural stiffness, the support 
links also undertake the mission of surface accuracy adjustment. With resorting to embedded actuators such as PZT, the length of links 
can be changed to conduct the active shape adjustment for the antennal panels. After all, when the SAR satellite enters outer space, the 
surface accuracy degradation is inevitable because of thermally induced deformation.

It has been indicated that the surface accuracy directly affects the satellite imagery resolution. To be more specific, the surface accu-
racy refers to the deviation between the desired working surface and the actual reflector of antenna panels, which can be evaluated with 
different indicators, such as flatness, pose error, maximum deformation, and RMS deviation. After considering practical engineering ad-
vancements and deformation distribution characteristics [41,42], the RMS deviation is chosen as the metric to assess the surface accuracy 
2
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Fig. 1. Structure of the spaceborne SAR antenna.

Fig. 2. Spatial heat fluxes and thermal conduction of an orbiting SAR satellite.

of antenna panels in this study. Assuming that there are n sample points, the RMS deviation � in the global coordinate system Og-XgYgZg

is defined as
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where wi = [�xi, �yi, �zi]T is the position deviation of each point along the three coordinate axes.
Under this background, our study focuses on optimizing the on-orbit surface accuracy by link adjustment. Aimed to minimize the RMS 

deviation, the optimization requires finding the proper position vector and the corresponding adjustment vector, which are discrete and 
continuous variables, respectively. Therefore, the problem actually belongs to a mixed-variable optimization problem.

To conduct the active optimization adjustment, three significant challenges must be tackled: (1) How to determine the temperature 
field of the on-orbit antenna with complex boundary conditions under the action of spatial heat fluxes? (2) How to construct the thermal-
structural coupling model for the whole overconstrained system to achieve the surface accuracy prediction? (3) How to develop an 
effective mixed-variable optimization algorithm for finding the superb combination of dimensional adjustment? In what follows, our 
efforts will be devoted to breaking through those barriers.

3. Thermal analysis and heat transmission

When a satellite enters the predetermined orbit, the antenna panels inevitably suffer from solar radiation, Earth-emitted radiation, and 
Earth-reflected radiation. To reveal the impact of the spatial thermal environment on the antenna panel, this section will characterize 
these external heat fluxes and construct the thermal transmission model.

3.1. Quantification of heat fluxes in space

As illustrated in Fig. 2, the spaceborne antenna travels periodically from the shadow region to the sunshine zone, and its absorbed 
solar radiation flux qs is formulated as

qs = αp Ss fs cos θs, (2)

where the solar heat flux Ss is at an average of 1353 W/m2 [37]; αp is the solar absorptivity; the view factor f s [30] depends on the 
antenna attitude; θs denotes the incident angle of sunlight.
3
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Fig. 3. Calculation of the Earth-reflected radiation flux.

When the sunlight strikes the Earth, part of it enters the atmosphere, while the rest bounces back into space. The Earth-reflected 
radiation also affects the low-orbit satellite, and the corresponding heat flux q f received by the antenna is determined as

q f = αp Ssαb

∫
ϕ

∫
θ

cosψ31 cosψ32 cosψ33

π L2
R2

e sin θdθdϕ, (3)

where the albedo factor αb is about 0.35 [39], and the radius Re of the Earth is 6371 km. As shown in Fig. 3, the spherical coordinate 
system (ϕ, θ) is constructed to describe the earth surface, and the distance L is calculated as

L =
√

R2
e + (Re + Ha)

2 − 2Re (Re + Ha) cos θ, (4)

where Ha is the orbital height of the satellite. Particularly, ψ31, ψ32 and ψ33 [43] are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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L
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L

[
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]
, 0 ≤ α2 ≤ π/2
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. (5)

Analogous to the solar radiation, the Earth also emits radiation with the heat flux Se of 237 W/m2 [40]. As illustrated in Fig. 3, the 
absorbed Earth-emitted radiation flux qe for the spaceborne antenna is expressed as

qe = αe Se

π

∫
ϕ

∫
θ

(cos θ cosβ + sin θ sinβ cosϕ) sin θdθdϕ. (6)

where αe is the absorptivity ratio, and β denotes the angle between the line connecting the Earth with the antenna and the inner normal 
of the panels.

Except for these external heat sources, the exothermic antenna also transfers thermal energy into outer space. Based on the Stefan-
Boltzmann law, the radiation flux qr is described as

qr = ςpσ(T 4
s − T 4

c ), (7)

where ςp denotes the antenna emissivity, and σ represents the Boltzmann constant. In addition, Ts and Tc denote the structural and 
ambient temperatures, respectively.

3.2. Analytical model of thermal transmission

Since outer space is almost a vacuum that prevents thermal convection, the heat is only transferred by radiation and conduction. The 
three thermal boundary conditions in the spaceborne satellite are illustrated as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

B1 : T (x, y, z) = T0

B2 : kx
∂T

∂x
nx + ky

∂T

∂ y
ny + kz

∂T

∂z
nz = q0

B3 : kx
∂T

∂x
nx + ky

∂T

∂ y
ny + kz

∂T

∂z
nz = ςsσ(T 4 − T 4

c )

, (8)

where T is the temperature field; T0 and q0 are the initial temperature and the heat flux density of the boundary, respectively; kx , ky and 
kz denote the thermal conductivities along the three coordinate axes, respectively; nx , ny and nz correspond to the directional cosines of 
the unit normal vector.
4
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For the support links, the temperature field is governed by

ks As
∂2T

∂x2
− ςsσ P s

(
T 4 − T 4

c

) + (qs + q f + qe + qr)Ds cosγs = ρscs As
∂T

∂t
, (9)

where ks , ςs , and cs denote the axial conductivity, surface emissivity, and specific heat of links, respectively; ρs is the material density; 
P s , Ds , and As represent the perimeter, diameter, and cross-section area, respectively; γs denotes the angle between the panel and the 
corresponding link. When the temperature field achieves a steady state, it yields ∂T /∂t = 0. According to the variational principle, the 
solution of Eq. (9) makes the following function at its minimum:

Is =
∫
l

[
1

2
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+ 1

5
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]
dl. (10)

Subsequently, the support links are divided into finite thermal elements with two nodes [Ti , T j], and the linear interpolation [27] is 
applied to construct the temperature distribution inside each element. As suggested by [44,45], T 4 = 4T 3

0 T − 3T 4
0 is employed to eliminate 

the fourth-order term. On this basis, the thermal balance equation of each support link is formulated as

(Ke
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where the thermal transfer matrices are expressed as
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(12)

Furthermore, by combining Fourier’s theorem with the latter two thermal boundary conditions, one can also obtain the temperature 
field of antenna panels by minimizing the function:

I p = 1

2
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where k1, k2, and k3 are the thermal conductivities of panels along the three coordinate axes, respectively; ρp and cp are the material 
density and the specific heat of panels, respectively; Q p is the strength of internal heat source; ql and qu denote the total thermal fluxes 
of the lower and upper surfaces, respectively; S p and �p are the surface area and the volume of panels, respectively;

According to the FEM, the temperature distribution of antenna panels can be characterized by the shape function Np and the nodal 
temperature vector qe

T as below:

T (x, y, z) = Np(x, y, z)qe
T . (14)

By uniting Eqs. (13)-(14), the governing equation for the steady-state thermal transfer is derived as

Ke
T qe

T = Qe
T , (15)

where the element matrices are determined by⎧⎪⎪⎪⎪⎪⎨
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Within the standard finite element framework, the matrices and nodal vectors are assembled to establish the heat transfer equation 
for the whole system, which takes the form as

KT qT = QT (17)

where KT is associated with Ke
1, Ke

2 and Ke
T ; qT is composed of all nodal temperatures; QT depends on Qe

l and Qe
T . According to the above 

formulation, the overall temperature field can be completely determined by the Newton-Raphson algorithm [46].

4. Surface accuracy prediction for the spaceborne antenna

After determining the temperature field of the spaceborne antenna, we will further develop the thermal-elastic coupling model with 
the absolute nodal coordinate formulation (ANCF). Considering the high nonlinearity that exists in the deformation analysis, an improved 
computational strategy will also be proposed to calculate the thermoelastic force efficiently in this section.
5
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Fig. 4. Two-node beam element with the ANCF.

4.1. Thermoelastic deformation of support links

For comprehensively capturing the deformation of support links, it is suggested to utilize the ANCF beam element to describe the 
structural flexibility [47,48]. Unlike the conventional finite element method based upon the infinitesimal rotation assumption, the ANCF 
directly adopts position gradients instead of rotation angles to guarantee the continuity of the strain field [49]. As a milestone in the 
development history of flexible multibody modeling, the ANCF method offers many advantages, including but not limited to, an exact 
geometric description [50], a global representation [48], the capability of increasing the interpolation order without increasing the number 
of nodes [51], and the ability to solve linear or nonlinear strain-displacement relationships [52,53]. Given these advantages, the ANCF has 
been widely applied to model aerospace structures [30,48,54]. Herein, a thermal integrated beam element with the ANCF is developed to 
reveal the coupled thermoelastic behavior of support links.

Since previous researches [27,47] have demonstrated that beam elements are more suitable than link elements in characterizing support 
links, the ANCF beam element with a complete gradient rather than a deficient gradient is adopted in this study. As shown in Fig. 4, the 
structural deformation of the ANCF beam element is directly characterized and evaluated in the global frame. The arbitrary coordinate 
vector r is formulated as

r = S (x, y, z)e = S (x, y, z)

[
rT

1,

(
∂r1

∂x

)T

,

(
∂r1

∂ y

)T

,

(
∂r1

∂z

)T

, rT
2,

(
∂r2

∂x

)T

,

(
∂r2

∂ y

)T

,

(
∂r2

∂z

)T
]T

, (18)

in which the shape function matrix S [55] is associated with the local coordinates x, y and z. For the beam element, its generalized 
external force Qb can be induced from the principle of virtual work, which is given by

Qb = ST (x, y, z)F0, (19)

where F0 denotes the original external force vector.
From the perspective of continuum mechanics, the deformation gradient matrix J of the beam element is a function of the derivative 

of the position vector:

J = ∂r

∂x

(
∂r0

∂x

)−1

=
[

∂S
∂x e ∂S

∂ y e ∂S
∂z e

]T
J−1
0 , (20)

where the global coordinate vector r0 is defined in the initial configuration, and x denotes the local coordinate vector. Accordingly, the 
Green-Lagrange strain tensor εm can be calculated by

εm = 1

2
(JTJ − I) = 1

2

⎡
⎢⎣

eTSae − 1 eTSde eTS f e

eTSbe − 1 eTSee

sym eTSce − 1

⎤
⎥⎦ . (21)

More intuitively, the symmetric property allows the tensor εm to be recast into a compact vector form:

ε0
b = [ε11, ε22, ε33,2ε12,2ε13,2ε23]T, (22)

where εi j is the (i, j)-th component of εm . Considering the thermal expansion effect, the above strain vector is modified as

εb = [ε11 − �Ts�s, ε22, ε33,2ε12,2ε13,2ε23]T , (23)

where �Ts denotes the corresponding temperature difference along the axes of support links, and �s denotes the thermal expansion 
coefficient.

According to the constitutive relationship between the strain and stress tensors, the strain energy U of the ANCF beam element is 
expressed as
6
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U = 1

2

∫
V

εT
bEbεbdV

=
∫ [

λ + 2μ

2

(
ε2

11 + ε2
22 + ε2

33

)
+ 2μ

(
ε2

12 + ε2
13 + ε2

23

)
+ λ (ε11ε22 + ε11ε33 + ε22ε33)

]
dV +∫ [

λ + 2μ

2
(�Ts�s)

2 − λ�Ts�s (ε11 + ε22 + ε33) − 2μ�Ts�sε11

]
dV

, (24)

where the elasticity matrix Eb depends on Lame constants λ and μ. By differentiating Eq. (24) with respect to e, the mapping from the 
nodal deformation and the thermoelastic force Q is constructed as follows:

Q = ∂U

∂e
= Kb(e,�Tb)e. (25)

Notice that the stiffness matrix Kb not only requires the volume integrals of large matrices, but also varies with the nodal coordinates 
and temperature distributions. What is worse, multiple iterations are generally inevitable for solving and optimizing the displacement 
field. If the elastic force is directly calculated via the above formula, the computation process will be very tedious and time-consuming 
due to the high nonlinearity and strong coupling. To tackle this problem, an improved solving strategy will be proposed to isolate the 
nodal coordinates and temperature variables from the numerical integration.

For calculating the elastic force efficiently and accurately, the whole stiffness matrix Kb is firstly decomposed into the following three 
parts:

Kb(e,�Ts) = K1 + K2�Ts + K3(e), (26)

where the matrices K1, K2 and K3 are formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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K1 = −3λ + 2μ

2
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SadV
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V
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S f + ST
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eeTS f
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. (27)

Obviously, K1 and K2 are constant because Sa , Sb , Sc , Sd , Se and S f are fully determined in the initial configuration. For the coordinate-
dependent matrix K3, we further reconstruct its (i, j)-th component into the quadric form as below:

[K3(e)]i j = eTGi j
Ke, (28)

where Gi j
K is given by
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ST

c

)
j + (Sc)

T
i

(
ST

a

)
j + (Sc)

T
i

(
ST

b

)
j

]
dV +

μ

2

∫
V

[(
Sd + ST

d

)T
i

(
ST

d

)
j + (

Se + ST
e

)T
i

(
ST

e

)
j +

(
S f + ST

f

)T

i

(
ST

f

)
j

]
dV

. (29)

It is pointed out that Gi j
K is also an invariant matrix that can be directly invoked after initialization. Consequently, the improved formula 

successfully transforms the complex calculation into simple matrix multiplications. Moreover, the symmetry of K3 (e) indicates that only 
the invariant matrices corresponding to the upper triangle and diagonal components of K3 need to be calculated.

As formulated above, both the nodal coordinate vector e and the temperature difference �Ts are completely eliminated from the 
volume integrals. By storing the invariant matrices K1, K2 and Gi j

K in advance, only simple mathematical manipulation is required instead 
of repeated integration operations. In addition, one can readily determine the Jacobian matrix of the thermoelastic force without resorting 
to numerical operations, because the same invariant matrices appear in its exact analytical solution:(

∂Q

∂e

)
ik

= ∂Qi

∂ek
= (K1 + K2�Ts)ik +

24∑ 24∑
s=1

es

[
Gi j

K3
+

(
Gi j

K3

)T
]

sk
e j. (30)
j=1
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Fig. 5. ANCF thin plate element with four nodes.

Therefore, the developed computational strategy can significantly improve the solving efficiency of thermoelastic deformation for the 
support links.

4.2. Thermoelastic deformation of antenna panels

Since the thickness-width ratio is less than 0.1, the thin plate element is suitable for describing the thermoelasticity of antenna panels. 
In order to release the assumptions on the deformation of the cross section in the traditional incremental FEM [56], the ANCF is still 
applied to precisely construct the displacement field of plate elements. On this basis, the corresponding computational strategy of the 
thermoelastic force and the Jacobian matrix is also developed for the plate element to improve the solving efficiency of the whole 
procedure.

Within the ANCF framework, the four-node thin plate element possesses 36 degrees of freedom. As depicted in Fig. 5, an arbitrary 
position vector r in the ANCF thin plate element is described as

r = Sp(x, y)e = Sp(x, y)

[
rT

1,

(
∂r1

∂x

)T

,

(
∂r1

∂ y

)T

, rT
2,

(
∂r2

∂x

)T

,

(
∂r2

∂ y

)T

, rT
3,

(
∂r3

∂x

)T

,

(
∂r3

∂ y

)T

, rT
4,

(
∂r4

∂x

)T

,

(
∂r4

∂ y

)T
]T

, (31)

where the shape function Sp [57] is associated with the local coordinates x and y, while ri (i = 1, 2, 3, 4) is the global position vector. 
Similar to the ANCF beam element, the generalized external force Qp for the plate element is determined by

Qp = ST
p (x, y)F0. (32)

It is known from the Kirchhoff plate theory [58] that two parts are involved with the strain energy of the plate element. The first 
part accounts for the normal and shear deformations, while the second part is induced by the bending and twisting effect. Given the 
constitutive matrices Eε and Eκ , the strain energy U can be calculated by

U = 1

2

∫
V

εTEεεdV + 1

2

∫
V

κTEκκdV . (33)

The strain tensor ε after incorporating the thermal expansion effect is revised as

ε = [
εxx, εyy,2εxy

]T =
[

1

2

(
∂r

∂x

)T (
∂r

∂x

)
− 1

2
,

1

2

(
∂r

∂ y

)T (
∂r

∂ y

)
− 1

2
,

(
∂r

∂x

)T (
∂r

∂ y

)]T

− [
�Tx�x,�T y�y,0

]T
, (34)

where �Tx and �T y denote the temperature differences along the x and y axes, respectively; �x and �y correspond to the thermal 
expansion coefficients of antenna panels in the two directions. Besides, the curvature κ is formulated as

κ = [
κxx, κyy,2κxy

]T =
⎡
⎢⎣

(
∂2r
∂x2

)T
n

‖n‖3
,

(
∂2r
∂ y2

)T
n

‖n‖3
,2

(
∂2r

∂x∂ y

)T
n

‖n‖3

⎤
⎥⎦

T

, n = ∂r

∂x
× ∂r

∂ y
. (35)

As to the ANCF thin plate element, the generalized thermoelastic force Qe is determined by

Qe = ∂U

∂e
= Qε + Qκ , (36)

where the components Qε and Qκ are written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qε =
∫
V

E

1 − ν2

(
εxx

∂εxx

∂e
+ εyy

∂εyy

∂e

)
+ 2E

1 + ν
εxy

∂εxy

∂e
+ νE

1 − ν2

(
εxx

∂εyy

∂e
+ εyy

∂εxx

∂e

)
dV

Qκ =
∫

Eh3

12
(
1 − ν2

) (
κxx

∂κxx

∂e
+ κyy

∂κyy

∂e

)
+ Eh3

6 (1 + ν)
κxy

∂κxy

∂e
+ νEh3

12(1 − ν2)

(
κxx

∂κyy

∂e
+ κyy

∂κxx

∂e

)
dV

. (37)
V
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Here, h, E , and ν represent the thickness, Young’s modulus, and Poisson’s ratio of antenna panels, respectively. To be more specific, the 
partial derivatives of strain and curvature tensors are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂εxx

∂e
= ST

xSxe

∂εyy

∂e
= ST

ySye

∂εxy

∂e
= ST

xSye

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂κxx

∂e
= 1

‖n‖3

[(
∂3r

∂x2∂e

)T

n +
(

∂n

∂e

)T
∂2r

∂x2

]
− 3

‖n‖5

(
∂2r

∂x2

)T

n
(

∂n

∂e

)T

n

∂κyy

∂e
= 1

‖n‖3

[(
∂3r

∂ y2∂e

)T

n +
(

∂n

∂e

)T
∂2r

∂ y2

]
− 3

‖n‖5

(
∂2r

∂ y2

)T

n
(

∂n

∂e

)T

n

∂κxy

∂e
= 1

‖n‖3

[(
∂3r

∂x∂ y∂e

)T

n +
(

∂n

∂e

)T
∂2r

∂x∂ y

]
− 3

‖n‖5

(
∂2r

∂x∂ y

)T

n
(

∂n

∂e

)T

n

, (38)

where Sx and Sy are the derivatives of Sp with respect to x and y, respectively.
It can be found that high nonlinearity exists in the relation among the thermoelastic force, the nodal coordinates and the temperature 

differences. Considering that the direct numerical differentiation is neither efficient nor accurate, an enhanced computational strategy is 
further developed to solve the thermoelastic force and the corresponding Jacobian matrix for the plate element.

For recasting the expression of the thermoelastic force into the simple matrix multiplication, the following matrices are introduced for 
ease of representation:

M = ST
xSx,N = ST

ySy,H = ST
xSy . (39)

Thereby, the partial derivatives of strain tensor can be evaluated by

∂εxx

∂ei
=

36∑
k=1

Mkiek,
∂εyy

∂ei
=

36∑
k=1

Nkiek,
∂εxy

∂ei
= 1

2

(
36∑

k=1

Hkiek +
36∑

m=1

Himem

)
, (40)

where Mki refers to the (k, i)-th item of M, and similar definitions are possessed by Nki and Hki . Subsequently, the nodal coordinates 
and temperature differences are extracted from the volume integral. For the i-th elastic force (Qε )i originated from normal and shear 
deformations, it can be reconstructed as

(Qε)i =
36∑

k=1

36∑
m=1

36∑
n=1

[(A1)ikmn + (A2)ikmn + (A3)ikmn] ekemen − (1 + 2�Tx�x)

36∑
j=1

(B1) jie j − (1 + 2�T y�y)

36∑
j=1

(B2) jie j. (41)

Specifically, the invariant matrices are derived as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1)ikmn = E

2(1 − ν2)

∫
V

(MkmMni + NkmNni)dV

(A2)ikmn = νE

2(1 − ν2)

∫
V

(NkmMni + MkmNni)dV

(A3)ikmn = E

2(1 + ν)

∫
V

(HkmHin + HkmHni)dV

(B1) ji = E

2(1 − ν2)

∫
V

(
M ji + vN ji

)
dV

(B2) ji = E

2(1 − ν2)

∫
V

(
N ji + vM ji

)
dV

, (42)

where (Aw )ikmn (w = 1, 2, 3) corresponds to the in the (i, 1296k + 36m + n – 1332)-th entity of Aw , and (Bs) ji (s = 1, 2) denotes the 
( j, i)-th item of Bs . It should be emphasized that A1, A2, A3, B1, and B2 are constant matrices, allowing to be calculated and stored in 
advance. As formulated above, the Jacobian matrix of (Qε )i can be further derived with the same invariant matrices in an explicit form:

∂(Qε)i

∂e j
=

36∑
m=1

36∑
n=1

[
(A1) jmni + (A2) jmni + (A3) jmni + 2(A1)imjn + 2(A2)imjn + (A3)imjn + (A3)i jmn

]
emen

− [
(1 + 2�Tx�x)(B1) ji + (1 + 2�T y�y)(B2) ji

] . (43)

In accordance with the procedure of Qε , one can deduce the efficient calculation formula of the thermoelastic force Qκ resulting from 
the bending and twisting. In summary, by introducing the invariant matrices and removing all variables from the integral, the proposed 
solving strategy not only facilitates the accurate calculation of thermoelastic force and its Jacobian matrix, but also significantly lightens 
the computational burden.
9
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Fig. 6. Constraint formulation between the joint and the panel.

4.3. Determination of the surface accuracy

Like the assembly process of FEM, all the ANCF elements can be fully incorporated [49]. Besides, the Lagrange multiplier technique en-
ables integrating the geometric constraint equations � into the governing equation of the whole structure. Consequently, the thermoelastic 
deformation of the antenna system is summarized as{

Qw(q,qT ) − Q f + �T
qλ = 0

�(q) = 0
, (44)

where q consists of all nodal coordinate vectors, and λ denotes the Lagrange multiplier vector. Qw and Q f are the generalized matrices 
of thermoelastic force and external force, respectively. �q denotes the Jacobian matrix of the constraint equation set. Note that the 
temperature differences �Tb , �Tx and �T y are determined by the temperature vector as shown in Eq. (17), and thus Qw is the function 
of both q and qT .

In particular, Q f originates from the dimensional adjustment of support links. If the length of the i-th link is increased by �li , the 
operation is equivalent to imposing an axial force Fi = Es A�li/li [7], where Es is the elastic modulus and li represents the design length 
of the i-th link. For description, the dimensional adjustment vector is defined as a = [�l1, �l2, �l3, �l4, �l5, �l6, �l7]T, which directly 
determines Q f .

Without loss of generality, the geometric relationship between the self-locked joint and the antenna panel is elaborated to illustrate 
how to obtain the constraint equations �. As depicted in Fig. 6, the global position vectors ri

P and r j
P of the connection points qi and q j , 

respectively, must coincide with each other. Moreover, along the joint axis, two unit direction vectors vi and v j can be defined for the 
self-locked joint and the antenna panel, respectively. These two vectors are always parallel to each other, i.e., vi × v j = 0. Mathematically, 
the cross-product can be fully alternated by three independent dot-product equations. Hence, the constraint equations of the self-locked 
joint are formulated as

�(qi,q j) =
[

(ri
P − r j

P )T (vi
1)

Tv j (vi
2)

Tv j (vi
1)

Tv j
2

]T = 0, (45)

where vi
1 and vi

2 are two orthogonal vectors perpendicular to vi , and v j
2 is similarly defined with respect to v j .

As formulated above, the Newton-Raphson iterative algorithm is also applied to obtain the nonlinear thermal-structural response. It is 
worth noting that the preceding sections have explicitly represented the thermoelastic force and the Jacobian matrix with invariant ma-
trices. The proposed computational strategy not only avoids the repeated integral operation in Eq. (43), but also enables readily obtaining 
the correction value without tedious numerical differentiation during the iteration process. Therefore, the solving time of the displacement 
field is greatly shortened.

Under the interaction of the thermoelastic effect with the geometrical nonlinearity, once all nodal coordinates are determined, the 
position deviation wi = [�xi , �yi , �zi ]T can be extracted with the Boolean matrix Ci , i.e., wi = Ciq. According to the definition of Eq. (1), 
it is easy to quantify the RMS deviation of the antenna. As such, the relation between the surface accuracy and the input parameters has 
been comprehensively revealed, which is represented as

� = f (a,g,h), (46)

where the input vectors g and h represent the intrinsic structure parameters and external heat fluxes, respectively.

5. Surface accuracy optimization for the spaceborne antenna

After developing the surface accuracy prediction model, this section will further propose an enhanced PSO algorithm for the active 
shape control of antenna panels. Taking the advantages of the evolutionary techniques, the classical PSO is endowed with novel hybrid 
encoding and reproduction schemes for solving the mixed-variable optimization problem. Moreover, an adaptive tuning approach is put 
forward to update the algorithm parameters for achieving robust optimization performance.
10
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Fig. 7. Encoding and reproduction schemes for the mixed variables.

5.1. Optimization model of the active surface adjustment

Aimed to minimize the RMS deviation, the optimization requires finding the proper position vector p and the corresponding assignment 
vector d. Specifically speaking, p = [p1, p2, p3, p4, p5, p6, p7]T is a Boolean vector where “1” indicates the link is to be adjusted. The 
assignment vector d = [d1, d2, d3, d4, d5, d6, d7]T denotes the desired length variation on the condition that all links are adjustable. In this 
manner, the actual dimensional adjustment vector can be determined as a = p ∗ d, where ∗ represents the Hadamard product.

Besides, there are three practical constraints for the system. First, the maximum displacement of each point is restricted by the pre-
scribed threshold Zmax. Secondly, to ensure structural reliability, the dimensional adjustment of links is confined within the interval 
[dmin, dmax]. Thirdly, considering the energy consumption of actuators, it is preferred to create a tradeoff between the attainable surface 
accuracy and the number of adjusted links, which means that an upper boundary na (na ≤ 7) exists for the latter.

In summary, the optimization problem of the surface accuracy is formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find p = [p1, p2, p3, p4, p5, p6, p7]T

d = [d1,d2,d3,d4,d5,d6,d7]T

min � =
√√√√1

n

n∑
i=1

(
wT

i wi
) = f (pTd,g,h)

s.t. wi ≤ wmax

pi = 0 or pi = 1 (i = 1,2, · · · ,7)
7∑

i=1

pi = na

dmin ≤ di ≤ dmax (i = 1,2, · · · ,7)

, (47)

Note that the vectors p and d are discrete and continuous variables, respectively. Therefore, the model belongs to a mixed-variable 
optimization problem.

5.2. Hybrid encoding and reproduction schemes

To overcome the defects of the pure relaxation or discretization method, hybrid operators are developed to tackle discrete and con-
tinuous variables separately. To accommodate the standard PSO framework [59], the position vector of each particle is encoded as 
Xi = [p1, p2, . . . , p7, d1, d2, . . . , d7]. For the first seven parameters that describe the combination of link adjustment, the probabilistic 
learning scheme is proposed to reproduce these discrete variables. For the remaining parameters that denote the dimensional adjustment 
values, the biomimetic learning scheme is developed to generate new continuous variables. The detailed process is described in Fig. 7.
11
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Table 1
Structural parameters of the antenna system (Unit: mm).

Parameter Symbol Value Parameter Symbol Value

Length of the auxiliary link l0 1026.41 Length of each antenna panel lp 1400.00
Length of the internal link l1, l2 1081.26 Width of each antenna panel w p 834.50
Length of the middle link l3, l4 630.14 Height of each antenna panel hp 20.00
Length of the external link l5, l6 1288.10 Diameter of the support links d 25.00

Drawing inspiration from the cooperative evolution, we make the update of discrete variables benefiting from the historical record 
of the whole swarm. To be more specific, the higher probability a discrete value appears in history, the more likely the corresponding 
variable will choose it. According to the basic criteria, the reproduction process for the discrete variables is designed as follows.

In the beginning, all values for these discrete binary variables are initialized with equal probability, i.e. Pi,n(0) = 1/2. Here, Pi,n(k)

denotes the probability that the i-th variable is set as the n-th candidate value in the k-th iteration. In the subsequent iterations, the 
dominant position vectors of the superior particles will be learned by new particles. To this end, we record the frequency Ri,n that the 
i-th variable is assigned to the n-th value, and the assignment probability is updated by

Pi,n(k + 1) = αi P i,n(k) + 2(1 − αi)Ri,n/Np, (48)

where αi is the assignment coefficient, and Np is the population of the particle swarm. It is highlighted that the first and second terms 
in the updating rule contain the historical and current search information, respectively. This combination seeks a trade-off between 
exploration and exploitation.

Compared with the operator of discrete variables, there are more variants of PSO for processing continuous variables. Most of these 
improved algorithms try to avoid premature by increasing the population diversity. However, fully random learning may deteriorate the 
convergence of the optimization algorithms. To strike the balance between warm diversity and convergence performance, the particles not 
only learn from the global record, but also draw on their own experience. As suggested by [60], the updating rules for the velocity V i and 
the position Xi are modified as{

V i(k + 1) = w v V i(k) + 2cr
[

Pb,r(k) − Xi(k)
]

Xi(k + 1) = Xi(k) + V i(k + 1)
, (49)

where Pb,r(k) is randomly selected from the excellent personal positions of the k-th generation; w v is the inertia weight, and the random 
number cr is distributed in [0, 1]. For a complete explanation on the velocity and position of particles, interested readers can refer to 
[61,62].

As formulated above, the assignment coefficient αi and the inertia weight w v have a significant influence on the optimization perfor-
mance. Moreover, it is inappropriate for all particles to set these parameters to fixed values. Hence, an adaptive parameter tuning strategy 
is developed to find suitable αi and w v for the PSO. The basic idea originates from incorporating historical search information to yield 
random parameters with good convergence. Specifically, the average values αi and w v from historical optimal particles are initialized as 
0.5. In each iteration, the two parameters will be generated by Student’s T distribution or Gaussian distributions. The bell-shaped Gaussian 
distribution with a small variance will make the parameter approach its mean value, while the Student’s T distribution has a fatter tail so 
that values with more diversity will be produced.

5.3. An enhanced PSO algorithm for the mixed-variable optimization

Taking the advantages of the penalty technique in simplicity and implementation [63], the inequality and equality constraints are 
transformed by adding the violation terms to the original fitness function. Finally, the enhanced PSO algorithm for the mixed-variable 
optimization is summarized in Fig. 8.

6. Case study

The proposed active optimization adjustment method will be demonstrated in this section. Firstly, the developed surface accuracy 
prediction model is examined by the experimental results at ambient temperature. On this basis, the on-orbit dimensional adjustment is 
implemented to optimize the antenna surface accuracy, and the analytical results show the superiority of the established methodology.

6.1. Introduction of structural and thermoelastic parameters

Taking a typical SAR antenna as an example, the active optimization adjustment is to be investigated to verify the technical feasibil-
ity. In compliance with the actual product configuration, the structural parameters of the antenna system are given in Table 1, and its 
thermoelastic characteristics are provided in Table 2. In practical engineering, the negative manufacturing tolerances are designed for all 
support links.

Considering the reliability of the antenna system, the allowable adjustment ranges for the auxiliary, internal, middle, and external links 
are [−3.08, 3.08] mm, [−3.24, 3.24] mm, [−1.89, 1.89] mm, and [−3.86, 3.86] mm, respectively. In addition, the antenna demands that 
the RMS deviation of two panels should be better than 2 mm, and the maximum deformation in the antenna panels is required to be less 
than 18 mm.
12
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Fig. 8. The developed framework for the surface accuracy optimization.

Table 2
Thermoelastic characteristics of the antenna system.

Thermoelastic property Support links Antenna panels

Symbol Value Symbol Value

Mass density [kg/m3] ρs 1.81 × 103 ρp 2.73 × 103

Elastic modulus [N/m2] Es 8.40 × 1010 E p 7.17 × 1010

Poisson’s ratio νs 0.307 νp 0.330
Specific heat [J/(kg K)] cs 952 cp 880
Surface emissivity ςs 0.78 ςp 0.95
Thermal radiation absorptivity αs 0.72 αp 0.79
Thermal expansion coefficients [K−1] �s 4.8 × 10−5 �x , �y 2.6 × 10−5

Thermal conductivity coefficients [W/(m K)] ks 25.75 k1, k2, k3 17.31

6.2. Verification of the surface accuracy prediction at ambient temperature

In order to lay a solid foundation for the active adjustment, the effectiveness and adaptability of the accuracy prediction model are 
first confirmed by the ground test under ambient temperature. As shown in Fig. 9, we utilize the laser tracker Leica TN90® to measure the 
surface deviation of the antenna panels. To simulate the dimensional adjustment, the gaskets with different thicknesses are to be placed 
into the interfaces between the support links and revolute joints.

In the benchmark experiment, the surface accuracy of the antenna is first measured at the reference temperature without taking into 
account any dimensional deviations of support links. Attributed to the ultra-precision machining, the initialized RMS deviation is only 
0.0047 mm, indicating that the initialized deviation is negligible compared to the thermally induced deformation.

Under different ambient temperatures and dimensional deviations, three illustrative cases as presented in Table 3 are investigated to 
shed light on the verification. Computationally, each support link is separated into 8-12 beam elements, and each antenna panel is divided 
into 416 thin plate elements. Given the temperature field and the dimensional deviations, the thermoelastic deformations of antenna 
panels in the three cases are solved and depicted in Fig. 10.

It can be observed that the antenna panels may suffer from different strain patterns, with more stress concentrated at the edges of the 
outer panel. The maximum deformations in the three cases are 8.1896 mm, 6.2985 mm, and 13.549 mm, respectively. With reference to 
the panel thickness, the thermoelastic deformation is serious enough to affect the antenna’s electric performance.
13
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Fig. 9. Experiment and measurement system.

Table 3
Dimensional adjustment and temperature difference in the experiment.

Case �l0 /mm �l1 /mm �l2 /mm �l3 /mm �l4 /mm �l5 /mm �l6 /mm �T /◦C

No. 1 −1.62 1.18 1.66 −1.56 0.24 −2.32 −1.70 10
No. 2 0.58 1.96 −0.84 1.62 −1.34 −1.50 1.82 15
No. 3 2.94 −0.32 −1.16 1.04 −0.58 1.78 2.06 20

Fig. 10. Thermoelastic deformation of antenna panels at ambient temperature.

Table 4 displays the antenna surface accuracy obtained from the prediction and experiment. The comparison results show that the 
absolute maximum RMS deviation is only 2.48%. More vividly, the position coordinates of antenna panels after thermoelastic deformation 
are shown in Fig. 11, where the actual measurement points almost overlap with the predicted plane. These slight differences reflect that 
the proposed thermal-structural model is capable of predicting the antenna surface accuracy with satisfactory performance.

To further verify the feasibility of the developed method, three experiments are carried out separately under different temperatures 
and dimensional deviations. For this purpose, all dimensional deviations are initialized to zero, and then the support links are adjusted 
to compensate for the accuracy deviation caused by the temperature variation. The iteration process of the developed optimization 
algorithm for the three cases is depicted in Fig. 12. It is observed that stable convergence solutions can be achieved after 34 itera-
14
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Table 4
Surface accuracy comparison of predictions and experiments.

Case Predicted RMS deviation /mm Experimental RMS deviation /mm Relative error

No. 1 5.1774 5.3092 −2.48%
No. 2 2.4301 2.4157 0.59%
No. 3 7.1623 7.0735 1.26%

Fig. 11. Fitting plane of antenna panels from experiment and prediction.

Fig. 12. Iterative optimization of the RMS deviations.

tions. Consequently, the adjustment vectors are determined as [−0.5693, −0.5654, −0.5654, −0.1857, −0.1857, −0.0472, −0.0472] mm, 
[−0.8018, −0.8764, −0.8764, −0.3573, −0.3573, −0.0664, −0.0664] mm, and [−1.2846, −1.2412, −1.2412, −0.4339, −0.4339, 0.0935,

0.0935] mm, respectively. Table 5 compares the corresponding theoretical and experimental results with and without link adjustment. 
The minor relative errors affirm the high accuracy of the established thermoelastic model for predicting the surface deviation of antenna 
panels. Moreover, the RMS deviations with link adjustment reduce by 51.96%, 54.64%, and 52.93% in the three cases, respectively. These 
results demonstrate the effectiveness of the developed optimization algorithm in regulating surface accuracy.

The above experimental studies have demonstrated the high accuracy and reliability of the developed thermoelastic model and opti-
mization framework under the ambient temperature condition. From a purely mathematical perspective, we can deduce that the methods 
are generally valid for any temperature since we did not introduce any assumptions regarding the temperature condition. In other words, 
15
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Table 5
Surface accuracy compensation in the ground experiments.

Case �T /◦C Initial RMS deviation /mm Optimized RMS deviation /mm

Predicted Experimental Relative error Predicted Experimental Relative error

No. 1 10 0.5820 0.5862 −0.72% 0.2674 0.2816 −5.04%
No. 2 15 0.8735 0.9124 −4.26% 0.4048 0.4139 −2.20%
No. 3 20 1.1641 1.1487 1.34% 0.5302 0.5407 −1.94%

Fig. 13. Working conditions for the surface accuracy optimization.

Fig. 14. The total heat flux subjected to the antenna.

changing the ambient temperature will not affect the applicability of the methods. Therefore, we will employ the developed methods to 
study the antenna systems under on-orbit temperature conditions.

6.3. Surface accuracy optimization for the antenna on orbit

After verifying the prediction accuracy of the thermoelastic model, we conduct the on-orbit active adjustment for optimizing the 
antenna surface accuracy. For demonstration, three indicative working conditions as shown in Fig. 13 are elucidated to adjust the thermally 
induced deformation.

The satellite altitude is 685 km, and the orbital period is 98.31 min. The outer space is considered a black body with an average 
temperature of 2.73 K. The reference temperature of the antenna is initialized as 294.25 K. Based on the formulation in Section 3.1, the 
total heat flux subjected to the antenna is determined and quantified as shown in Fig. 14.

According to the developed heat transfer model, the temperature field of two panels is depicted in Fig. 15. Due to the structural 
symmetry, the temperature distributions are also symmetric with respect to the Yg axis. In particular, the uneven temperature field 
indicates the uniform assumption in previous studies is impractical. By contrasting the first and third conditions, it can be found that the 
temperature difference is as high as 182.51 K.

Moreover, the corresponding FE model is built through the commercial software ANSYS, and the temperature differences of both 
support links and antenna panels are simulated. The analytic results are compared in Tables 6 and 7 in detail. Regarding the temperature 
differences of the support links, the maximum relative errors under the three conditions are 2.34%, 4.18%, and 0.82%, respectively. As 
to the temperature differences of antenna panels, the maximum relative errors between the prediction and simulation results are 1.40%, 
4.02%, and 1.31%, respectively. Therefore, the established heat transfer model is capable of precisely calculating the temperature field of 
the on-orbit SAR antenna.

Once the temperature field is determined, the RMS deviation of the antenna can be solved and optimized as formulated in Sections 4
and 5. Fig. 16 shows the convergence process of the developed mixed-variable optimization algorithm. The antenna surface deviations 
under the three working conditions reach the minimum after 85, 91, and 59 iterations, respectively. As presented in Table 8, the active 
optimization adjustment decreases the initial RMS deviations by 83.61%, 86.82%, and 74.80%, respectively. Moreover, among the three 
conditions, the optimized maximum deformation of the antenna panels is less than 14.8002 mm.

On a laptop with an Intel Core i7-2.5 GHz processor, the developed optimization algorithm requires an average of 864.07 seconds 
to determine the adjustment vectors for the three conditions. In terms of practical application, two key points regarding on-orbit active 
adjustment are noteworthy. Firstly, active adjustment is infrequent considering the system reliability and energy consumption. Secondly, 
the orbits of such spaceborne antennas are typically stable, exhibiting periodic thermally induced deformations. Therefore, it is feasible to 
pre-calculate the adjustment vectors, and then conduct on-orbit adjustment remotely by readily accessing the dataset. In addition, the use 
of memory alloys would make the strategy more attractive, and parallel computing techniques can be employed to further improve the 
optimization efficiency.
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Fig. 15. Temperature distribution of the antenna panels.

Table 6
Temperature differences of the support links (unit: K).

Condition Temperature difference �T0 �T1, �T2 �T3, �T4 �T5, �T6

No. 1 Prediction 90.1081 77.0126 77.4337 78.0132
Simulation 89.2158 77.1731 75.6599 77.2859
Relative error 0.46% −0.21% 2.34% 0.94%

No. 2 Prediction 89.8663 75.1676 74.5371 75.1414
Simulation 89.0870 74.3253 71.5476 74.4623
Relative error −1.37% 1.13% 4.18% 0.91%

No. 3 Prediction −110.8710 −122.1178 −122.9239 −121.6940
Simulation −111.7893 −122.5535 −123.5429 −122.0141
Relative error −0.82% −0.36% −0.50% −0.26%

Table 7
Temperature differences of the antenna panels (unit: K).

Condition Temperature difference �T p1 �T p2 �T p3 �T p4 �T p5 �T p6

No. 1 Prediction 39.1544 44.4609 39.2576 44.5162 44.5709 39.2111
Simulation 38.7192 45.6731 39.8137 44.0225 44.8376 38.7219
Relative error 1.12% −2.65% −1.40% 1.12% −0.59% 1.26%

No. 2 Prediction 18.5683 23.2103 18.9164 23.0981 23.2232 18.5641
Simulation 18.1476 22.8167 19.3863 23.8850 23.0362 17.8470
Relative error 2.32% 1.73% −2.42% −3.29% 0.81% 4.02%

No. 3 Prediction −139.2725 −138.7118 −138.9536 −138.9237 −138.8102 −139.2921
Simulation −139.8940 −138.0724 −137.2381 −137.6314 −137.0217 −138.3089
Relative error −0.44% 0.46% 1.25% 0.94% 1.31% 0.71%

6.4. Further discussion

In practical engineering, not all the support links are always available to be adjusted because of the limitation of energy consumption. 
Therefore, it is worth discussing how the number of optional links affects the surface accuracy optimization of the spaceborne antenna. For 
this purpose, the dimensional adjustments with 1-4 links are demonstrated here in detail under the first working condition. As revealed 
in Table 9, the RMS deviation and the maximum deformation become larger with the increasing number of adjustable links. Nevertheless, 
17
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Fig. 16. Convergence process of the developed optimization algorithm.

Table 8
Surface accuracy optimization results with complete adjustment (unit: mm).

Condition Initial RMS deviation Optimized RMS deviation Dimensional adjustment vector

No. 1 5.0572 0.8290 [−2.72, 0.13, −0.10, 1.32, 0.91, −0.85, 1.06]
No. 2 4.7849 0.6304 [−3.08, −3.24, −3.24, 1.86, 1.20, −2.26, −1.85]
No. 3 1.1847 0.2985 [2.52, 0.54, 1.53, −0.38, 0.02, −3.15, −2.59]

Table 9
Surface accuracy optimization results with partial adjustment (unit: mm).

Na Optimized RMS deviation Optimized maximum deformation Dimensional adjustment vector

4 1.3569 14.5974 [0, 1.1518, 1.1486, 0, 0, −1.7670, −1.0144]
3 1.8104 16.3326 [−1.2897, 0.1441, 0, 0, 0, −1.4262, 0]
2 2.7306 20.2891 [0, 1.2062, 1.0668, 0, 0, 0, 0]
1 3.6172 23.5549 [−1.4057, 0, 0, 0, 0, 0, 0]

Fig. 17. Convergence curves of different optimization algorithms.

the desired surface accuracy can be obtained simply by altering the length of three support links, i.e., the partial adjustment also has great 
potential to compensate for the thermally induced deformation of antenna panels very well.

As shown in Table 9, the optimal adjustment positions can disrupt the structural symmetry due to the non-uniform temperature field. 
For instance, when there are 3 links to be adjusted, the optimal choice is the auxiliary link (l0), the internal link (l1), and the external link 
(l5). However, if the optional links are even in number, it is advisable to prioritize the internal links. In addition, it is noteworthy that the 
partial adjustment with different links corresponds to different adjustment positions, and none of the links exhibits a clear advantage in 
compensating for the surface accuracy.
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Furthermore, the developed multi-variable optimization algorithm is compared with the relaxation method (RM) [64] and the dis-
cretization method (DM) [27], which are also incorporated into the PSO framework. The corresponding convergence curves are depicted 
in Fig. 17. The presence of multiple constraints can produce large infeasible regions in the search space, causing the RM and DM to get 
trapped in local optima. Besides, the RM relies on a simple round mechanism to update the discrete variables, which inevitably yields sub-
optimal solutions and reduces convergence efficiency. The DM divides the whole search space into discrete segments without distinction 
and requires longer binary-coded strings, resulting in slower convergence. By leveraging separate reproduction schemes for continuous and 
discrete variables, the enhanced optimization framework outperforms the other two methods in terms of optimal value and convergence 
speed. Consequently, the proposed mixed-variable optimization algorithm is more efficient for the active dimensional adjustment.

7. Conclusions

This article has proposed and demonstrated an active optimization adjustment method for the surface accuracy control of spaceborne 
SAR antennas. Instead of simply assuming the even temperature distribution of the whole antenna system, the heat transfer model under 
the complex spatial thermal fluxes has been established to determine the specific temperature field. Afterward, considering the ther-
moelastic effect and the geometrical nonlinearity, the surface accuracy prediction model has been developed for evaluating the structural 
deformation in the service environment. Moreover, the thermoelastic force and its Jacobian matrix have also been explicitly derived with 
the technique of invariant matrices, which has improved the solving efficiency and accuracy of the thermal-structural response. After 
converting the thermoelastic deformation compensation into an objective optimization problem with multiple prescribed constraints, we 
have further proposed an enhanced mixed-variable optimization algorithm to obtain the superior active adjustment strategy. In particular, 
the proposed hybrid encoding scheme and the adaptive tuning approach have strengthened the diversity and convergence of the opti-
mization algorithm, endowing an excellent performance in minimizing the antenna surface deviation. Finally, the case study has verified 
the feasibility and superiority of the proposed active optimization adjustment method.

In summary, our research not only proposes an effective theoretical prediction framework for the thermally induced deformation of the 
antenna system, but also extends the ground pre-adjustment to on-orbit active adjustment for surface accuracy compensation, facilitating 
the performance improvement of the spaceborne SAR antennas. Since this work focuses on establishing the surface accuracy adjustment 
framework of such antenna systems, the integrated structural-electromagnetic performance optimization [21] will be explored in further 
work.
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